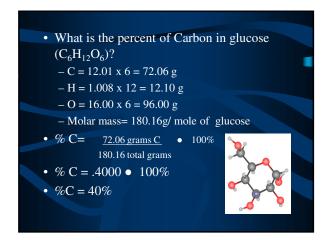

Mola	or Mass and Perce Composition	ent


Calculating Molar Mass	
Molar Mass is the mass in grams equal to the sum of all the atomic masses of the	
component atoms of a substance.	


Molar Mass Examples - Elements		
• carbon	12.01 g/mol	
• aluminum	26.98 g/mol	
• zinc	65.39 g/mol	

Molar Mass Examples	
(Compounds) • sodium bicarbonate	•
• NaHCO ₃	
• 22.99 + 1.00 + 12.01 + 3(15.99)	
• sucrose = 83.97 g/mol	
• C ₁₂ H ₂₂ O ₁₁	
• 12(12.01) + 22(1.00) + 11(15.99)	
= 342.01 g/mol	

	e by mass of each compound
% composition = -	$\frac{\textit{mass of element}}{\textit{total mass}} \times 100$
	totat mass

Percentage Composition Find the % composition of Cu ₂ S.		
%Cu =	127.08 g Cu 159.14 g Cu ₂ S	-×100 = 79.85% Cu
%S = -	32.06 g S 159.14 g Cu ₂ S	× 100 = 20.15% S

Percentage (Composition
--------------	-------------

• How many grams of copper are in a 38.0-gram sample of Cu₂S?

Cu₂S is 79.85% Cu

 $(38.0 \text{ g Cu}_2\text{S})(0.7985) = 30.3 \text{ g Cu}$

Percentage Composition Find the percentage composition of a sample that is 28 g Fe and 8.0 g O.		
%Fe = -	28 g 36 g	$- \times 100 = 78\% \text{ Fe}$
%O =	8.0 g 36 g	–×100 = 22% O

Perce	entage Co	mposition
calciur	n chloride d	entage of water in dihydrate,
CaCl ₂ •	2H ₂ O?	
%H ₂ O =		_×100 = 24.48%
	146.95 g	H ₂ O